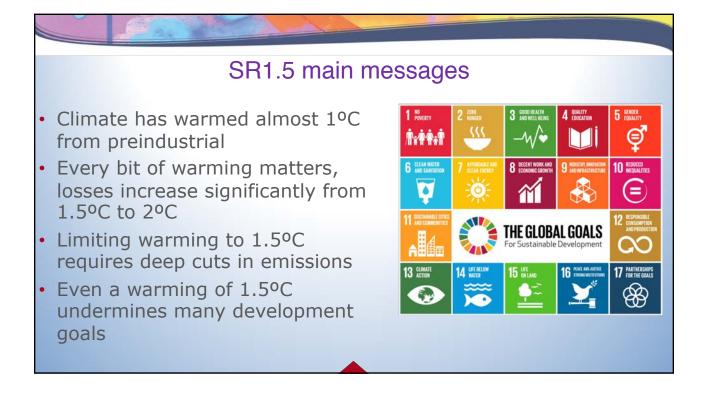
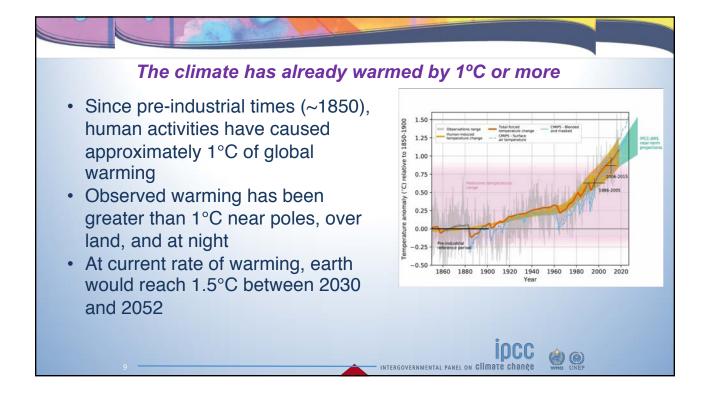
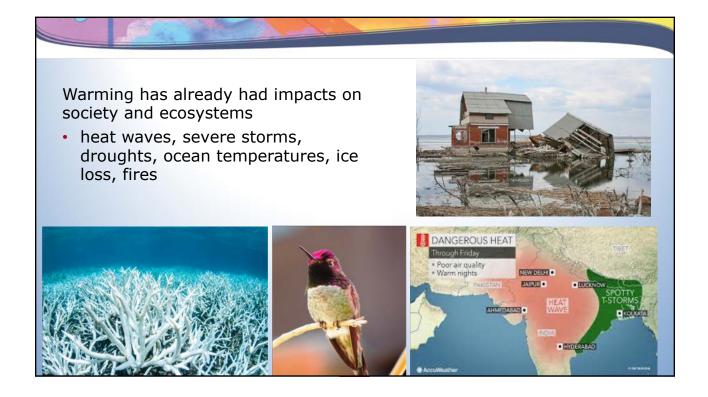


The report in numbers	
91 Le 133 Contributing authors	ad Authors from 40 Countries
6000 Studies Assessed	1 113 Reviewers
18 month timeline	42 001 Comments
3	INTERGOVERNMENTAL PANEL ON CIIMBTE CHBRICE

Approved Outline


Ch1 Observed change and carbon budgets, key concepts Ch2 Mitigation pathways to 1.5°C Ch3 Impacts of 1.5°C and 2°C on climate, natural and human systems Ch4 Mitigation and adaptation options, feasibility, costs Ch5 Sustainable development, poverty eradication and reducing inequalities





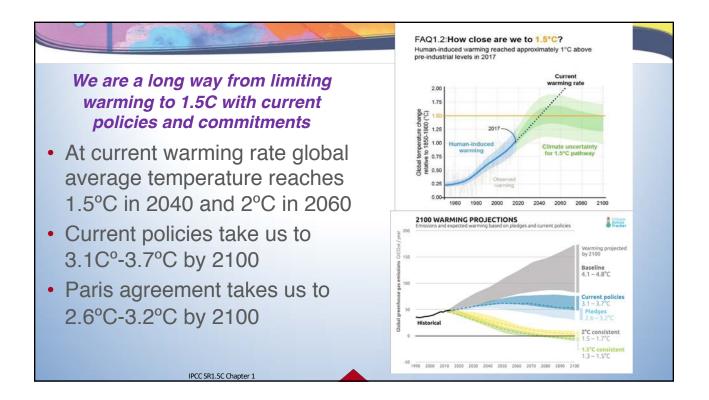
Challenges

- 18 month timeline
- Collaboration between IPCC Working Groups
- High and urgent policy relevance to COP
- Lack of literature that compares 1.5°C with 2°C, overshoot and SDG/climate connections, most literature came out very late
- Regional implications hard to assess
- 42,000 review comments to respond to

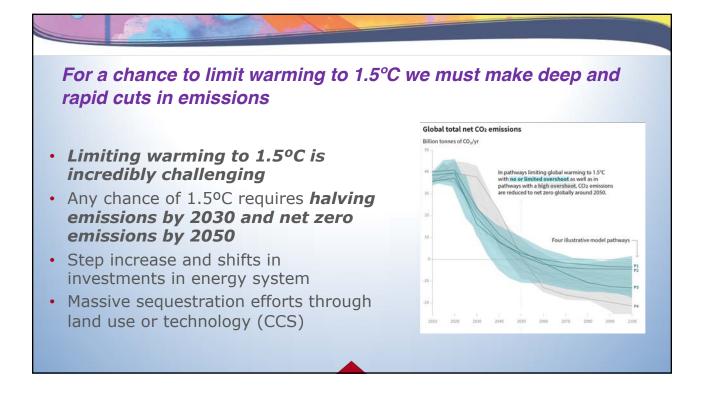
Every bit of warming matters... with significantly more serious impacts at 2°C compared to 1.5°C

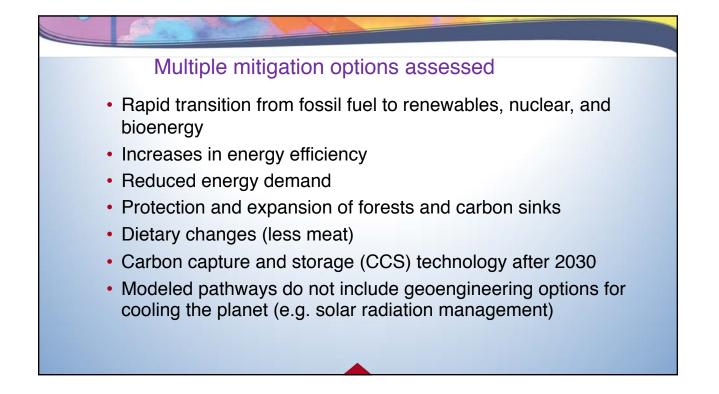
- 1.5°C has less serious impacts on people and ecosystems than 2°C or higher temperatures
 - At 1.5°C tropical corals survive, at 2°C they disappear
 - Risk of habitat loss for many species, and the transformation of ecosystems, is 50% less at 1.5°C

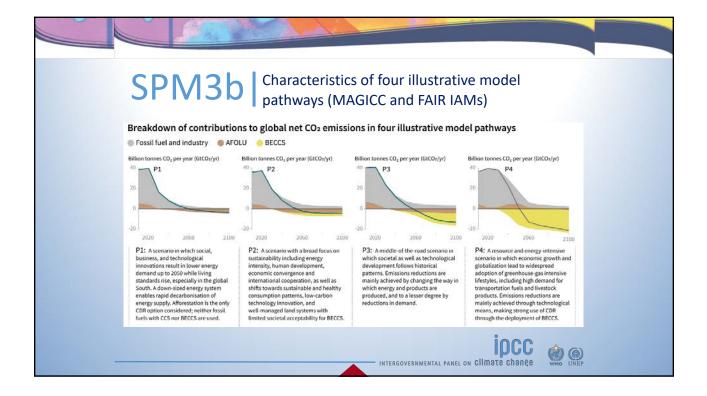
1.5°C compared to 2°C : Impacts on health and livelihoods

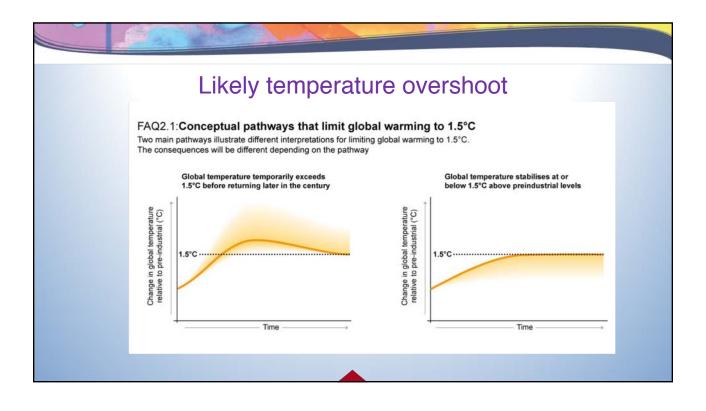

- Proportion of people exposed to water stress and heatwaves could double
- Sea level rise is about 10 cm less with 10+ million less people at risk Poverty rises by 100+ million from 1.5°C to 2°C
- Economic impacts are less at 1.5°C
- Some are affected more than others because of differential vulnerabilities

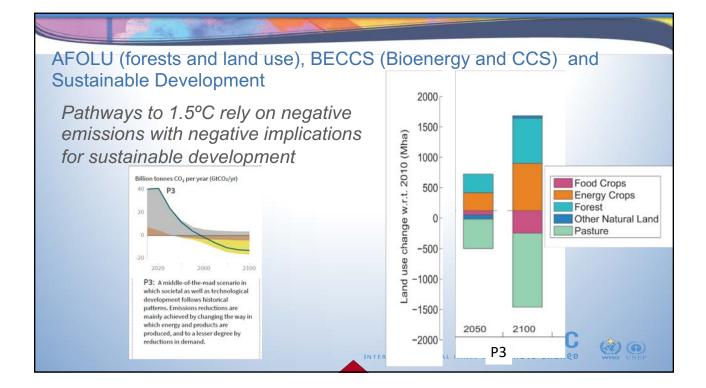
Small islands, least developed countries, women and children

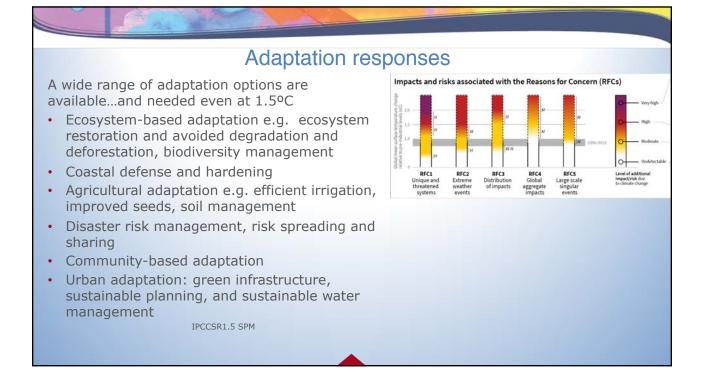


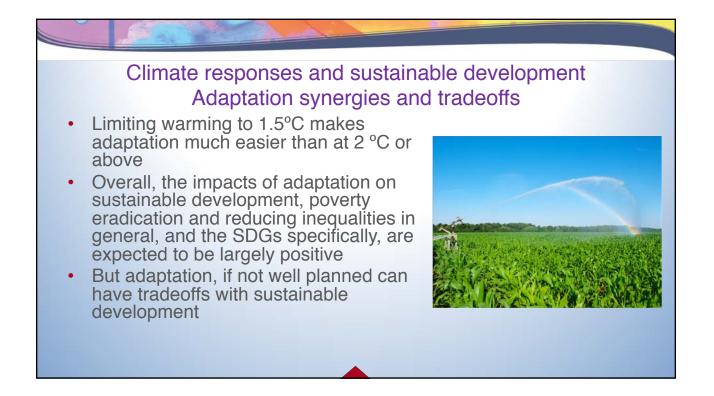



		obu impaus ai	at 1.5°C and 2°C	,	
Table 5.1: S	ustainable	development implications of av	voided impacts between 1.5°C and	d 2°C global warming	
Impacts	Chapter 3 section	1.5°C	2°C	Sustainable development goals (SDGs) more easily achieved when limiting warming to 1.5°C	
Water	3.4.2.1	4% more people exposed to water stress	8% more people exposed to water stress with 184-270 million people more exposed	SDG 6 water availability for all	
scarcity	Table 3.4	496 (range 103-1159) million people exposed and vulnerable to water stress	586 (range 115-1347) million people exposed and vulnerable to water stress		
	3.4.3 Table 3.4	Around 7% of land area experiences biome shifts	Around 13% (range 8-20%) of land area experiences biome shifts	SDG 15 to protect terrestrial ecosystems and halt biodiversity loss	
Ecosystems	Box 3.5	70-90% of coral reefs at risk from bleaching	99% of coral reefs at risk from bleaching		
Cartholia	3.4.5.2	Less cities and coasts exposed to sea level rise and extreme events	More people and cities exposed to flooding	SDG 11 to make cities and human settlements safe and resilient	
Coastal cities	3.4.5.1	31-69 million people exposed to coastal flooding	32-79 million exposed to coastal flooding		
Food systems	3.4.6 and Box 3.1	Significant declines in crop yields avoided, some yields may increase	Average crop yields decline	SDG 2 to end hunger and achieve food security	
	Table 3.4	32-36 million people exposed to lower yields	330-396 million people exposed to lower yields		
Health	3.4.7	Lower risk of temperature related morbidity and smaller mosquito range	Higher risks of temperature related morbidity and mortality and larger range of mosquitoes	SDG 3 to ensure healthy lives for all	
	Table 3.4	3546-4508 million people exposed to heatwaves	5417-6710 million people exposed to heatwayes		



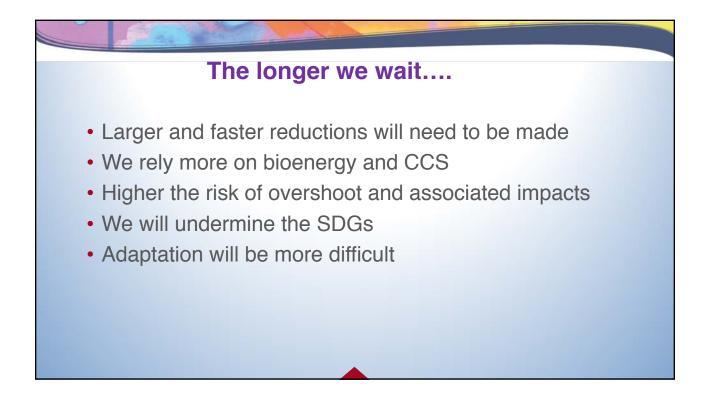






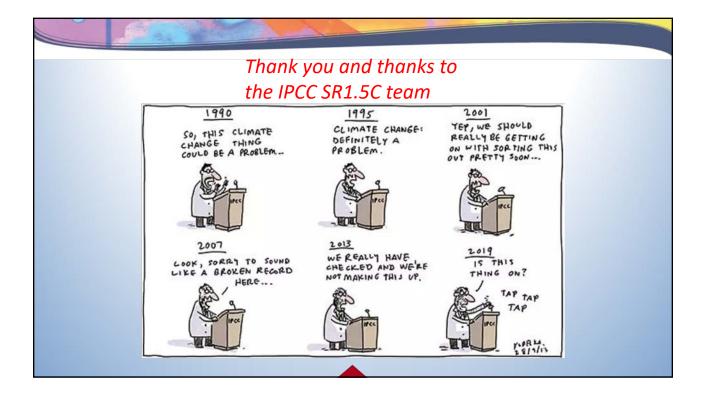
	Cha					a a a a la l	
SPM3b	Cha	racteris	LICS OF I	ourint	istrative i	nouei	
	patr	iways					
		'					
Global indicators	P1	P2	P3	P4	Interquartile range		
Pathway classification	No or low overshoot	No or low overshoot	No or low overshoot	High overshoot	No or low overshoot		
COs emission change in 2030 (% rel to 2010)	-58	-47	-41	4	(-59,-40)		
- in 2050 (% rel to 2030)	-93	-95	-91	-97	(-104,-91)		
Kyoto-GHG emissions" in 2030 (% rel to 2010)	-50	-49	-35	-2	(-55,-38)		
- in 2050 (% ral to 2010)	-82	-89	-78	-60	(-93,-81)		
Final energy demand** in 2030 (% rel to 2010)	-15	-5	17	29	(-12, 7)		
- in 2050 (% rel to 2010)	-32	2	21	44	(-11, 22)		
Renewable share in electricity in 2030 (%)	60	58	45	25	(47, 65)		
- in 2050 (%)	77	81	63	70	{69,87}		
Primary energy from coal in 2030 (% rel to 2010)	-78	-61	-75	-59	(-78, -59)		
-in 2050 (% rel to 2010)	-97	-17	-73	-97	(-95, -74)		
from ail in 2030 (% rel to 2010)	-37	-13	-4	86	(-34,3)		
- in 2050 (% net to 2010)	-87 -25	-50	-61	-32 37	(-78,-31)		
from gas in 2030. (% rel to 2010) in 2050. (% rel to 2010)	-74	-20	21	-48	(-26,21) (-56,6)		
from nucleor in 2030 (% ref to 2010)	59	-53	98	106	(-36,6) (44,102)		
- in 2050 (% rel to 2010)	150		501	465	(91,190)		
from biomass in 2030 (% rel to 2010)	-11	0	36	-1	(29,80)		
- in 2050 (% rel to 2010)	-16	40	121	418	(123,261)		
from non-biomass renewables in 2030 (% rel to 2020)	430	470	315	110	(243,438)		
- in 2050 (% rel to 2010)	832	1327	878	1137	(575,1300)		
Cumulative CCS antil 2100 (GtCDs)	0	348	687	1218	(550, 1017)		
of which BECCS (GtCD)	0	151	414	1191	(364, 662)		
Land area of bioenergy crops in 2050 (million hectare)	22	93	283	724	(151, 320)		
Agricultural CH+ emissions in 2030 (% rel to 2020)	-24	-48	1	14	(-30,-11)		
in 2050 (% rel to 2020)	-33	-60	-23	2	(-46,-23)		
Agricultural NoO emissions in 2030 (% rel to 2010)	5	-26	15	3	(-21,4)		
in 2050 (% rel to 2020)	6	-26	0	29	(-26,1)		
Agricultural NuO emissions in 2030 (% rel to 2010)	5 6 Is identified by the Choose	-26 -26	15 0 *Kyoto gas emissions a	3 39 e bosed on SAR GWP-J nand are associated w	(-21,4) (-26,1)	inco	

		Limited ove n change fro	· ·
Action	2030	2050	ZANAL ZANA
Energy Demand	-5%	2%	
Energy from Coal	-61%	-77%	State State
Energy from Oil	-13%	-50%	
Energy from Gas	-20%	-53%	
Energy from Nuclear	+83%	+98%	
Energy from renewables (wind, solar, hydro, geothermal)	+470%	+1327%	
CCS+Bioenergy	+348 GT	+151 GT	



Adaptation options in housing sector

- Increased air conditioning can increase energy costs and use of fossil fuels
- Adaptation can be expensive for poor



<section-header><text><text><text>

Criticisms so far...

- Too pessimistic/depressing
- Not pessimistic enough (tipping points, conflict and migration)
- Doesn't address the question of allocation of responsibility
- Did not adequately answer key questions of costs and benefits, (loss and damage, costs and limits of adaptation)
- Reliance on Integrated Assessment Models
- Key sections rely on small number of papers
- Disagreements with assessment of nuclear, SRM, BECCS etc.
- Many research gaps

